TY - JOUR KW - BSDF KW - daylight KW - radiance KW - redirection KW - sDA KW - window design AU - Tuğçe Kazanasmaz AU - Lars Grobe AU - Carsten Bauer AU - Marek Krehel AU - Stephen Wittkopf AB - This study presents optimization approaches by a recent Climate-Based-Daylight-Modeling tool, EvalDRC, to figure out the necessary area for a daylight redirecting micro-prism film (MPF) while minimizing the glazing area. The performance of a window in terms of spatial Daylight Autonomy (sDA) is optimized by its geometry and optical properties. Data implemented in simulation model are gathered through on-site measurements and Bidirectional-Scattering Distribution Function (BSDF) gonio-measurements. EvalDRC based on Radiance with a data driven model of the film's BSDF evaluates the window configurations in the whole year. The case to achieve an sDA of at least 75% is a South-facing window of a classroom in Switzerland. A window zone from 0.90 m to 1.80 m height provides view to the outside. The upper zone from 1.80 m to 3.60 m is divided into six areas of 0.30 m height in three optimization approaches including the operation of sunshades as well. First, the size of the clear glazing is incrementally reduced to find the smallest acceptable window-to-wall ratio (WWR). Second, micro-prism films are applied to an incrementally varying fraction the initial glazed area to determine the minimum film-to-window ratio (FWR). Finally, both approaches are combined for a minimum FWR and WWR. With clear glazing and WWR of 75%, the sDA of 70.2% fails to meet the requirements. An sDA of 86.4% and 80.8% can be achieved with WWR 75%, FWR 1/9 and WWR 50%, FWR 1/2 respectively. The results demonstrate the film's potential to improve the performance of windows with reduced WWR. BT - Building and Environment DA - June DO - 10.1016/j.buildenv.2016.03.018 LA - eng N2 - This study presents optimization approaches by a recent Climate-Based-Daylight-Modeling tool, EvalDRC, to figure out the necessary area for a daylight redirecting micro-prism film (MPF) while minimizing the glazing area. The performance of a window in terms of spatial Daylight Autonomy (sDA) is optimized by its geometry and optical properties. Data implemented in simulation model are gathered through on-site measurements and Bidirectional-Scattering Distribution Function (BSDF) gonio-measurements. EvalDRC based on Radiance with a data driven model of the film's BSDF evaluates the window configurations in the whole year. The case to achieve an sDA of at least 75% is a South-facing window of a classroom in Switzerland. A window zone from 0.90 m to 1.80 m height provides view to the outside. The upper zone from 1.80 m to 3.60 m is divided into six areas of 0.30 m height in three optimization approaches including the operation of sunshades as well. First, the size of the clear glazing is incrementally reduced to find the smallest acceptable window-to-wall ratio (WWR). Second, micro-prism films are applied to an incrementally varying fraction the initial glazed area to determine the minimum film-to-window ratio (FWR). Finally, both approaches are combined for a minimum FWR and WWR. With clear glazing and WWR of 75%, the sDA of 70.2% fails to meet the requirements. An sDA of 86.4% and 80.8% can be achieved with WWR 75%, FWR 1/9 and WWR 50%, FWR 1/2 respectively. The results demonstrate the film's potential to improve the performance of windows with reduced WWR. PY - 2016 SE - 243 SP - 243 EP - 256 T2 - Building and Environment TI - Three approaches to optimize optical properties and size of a South-facing window for spatial Daylight Autonomy UR - http://www.sciencedirect.com/science/article/pii/S0360132316300956 VL - 102 SN - 0360-1323 ER -